Modelling 1 SUMMER TERM 2020

Inverse Problems

Linear Inverse Problems

Inverse Problems

Settings

- (Physical) process f
- Transforms original input x into output b
- Task: recover x from b

Examples:

- 3D structure from photographs
- Tomography: values from line integrals
- 3D geometry from a noisy 3D scan

Linear Inverse Problems

Simplification

- f is linear
- Finite dimensional input/output

$$f(\mathbf{x}) = \mathbf{b}$$

written as $\mathbf{A}_f \mathbf{x} = \mathbf{b}$

Then: Inversion of *f* is ill-posed, if...

- ...there is no solution.
- ...there is more than one solution.
- ...there is exactly one solution, but the SVD contains very small singular values.

Linear Inverse Problems

Simplification

- f is linear
- Finite dimensional input/output

$$f(\mathbf{x}) = \mathbf{b}$$
 written as $\mathbf{A}_f \mathbf{x} = \mathbf{b}$

Then: Inversion of *f* is ill-posed, if...

- ...there is no solution.
- ...there is more than one solution.
- ...there is exactly one solution, but the SVD contains very small singular values.

remark:

formulation for continuous models (infinite-dim. spaces): "the solution x depends continuously on b"

Example

Linear Operator

• Schauder Basis b_1, b_2, b_3, \dots

$$f(x) = \sum_{k=1}^{n} \lambda_k b_k(x)$$

- Linear map $\lambda_k \to \frac{1}{k^2} \cdot \lambda_k$ is ill posed
- Inversion would be $\lambda_k \to k^2 \cdot \lambda_k$ (unbounded!)
- Example: Fourier basis Then this is the Laplace operator $\Delta = \partial_1^2 + \dots + \partial_d^2$

Remark: General SVD

Linear Operator

Orthogonal functions ("vectors")

$$u_1, u_2, u_3, \dots : \mathbb{R} \to \mathbb{R}$$

 $v_1, v_2, v_3, \dots : \mathbb{R} \to \mathbb{R}$

Scalars ("singular values")

$$\lambda_1, \lambda_2, \lambda_3, \dots \in \mathbb{R}$$

• Linear map $L: (\mathbb{R} \to \mathbb{R}) \to (\mathbb{R} \to \mathbb{R})$, operates on functions $f: \mathbb{R} \to \mathbb{R}$

$$L(f) = \sum_{k=1}^{\infty} (\lambda_k \cdot \langle f, u_k \rangle) v_k$$

(exists under certain conditions, details beyond this course)

Finite Dim. Linear Inverse Problems

Simplifications

- f is linear
- Finite dimensional input/output

$$f(\mathbf{x}) = \mathbf{b}$$
 written as $\mathbf{A}_f \mathbf{x} = \mathbf{b}$

Then: Inversion of *f* is ill-posed, if...

- ...there is no solution.
- ...there is more than one solution.
- ...there is exactly one solution, but the SVD contains very small singular values.

III-Posed Problems

Small singular values amplify error

- Inexact input
 - Measurement / numerical noise
- SVD

III posed Problems

Ratio: Small singular values amplify errors

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} = (\mathbf{V}\mathbf{D}^{-1}\mathbf{U}^{\mathrm{T}})\mathbf{b}$$

Example

$$\mathbf{D} = \begin{pmatrix} 2.5 & 0 & 0 & 0 \\ 0 & 1.1 & 0 & 0 \\ 0 & 0 & 0.9 & 0 \\ 0 & 0 & 0 & 0.000000001 \end{pmatrix}$$

- Noise amplified by 10⁹
- Does not depend on how we invert the matrix.
- Condition number: $\sigma_{\text{max}}/\sigma_{\text{min}}$

0.4

1.6

Analysis

Matrix

Dominant Eigenvectors

Smallest Eigenvectors

Pseudo Inverse

SVD Regularized Solve

For full rank, square A:

$$\mathbf{A} = \mathbf{U} \mathbf{D} \mathbf{V}^{\mathrm{T}}$$

$$\Rightarrow \mathbf{A}^{+} = (\mathbf{U} \mathbf{D} \mathbf{V}^{\mathrm{T}})^{-1} = (\mathbf{V}^{\mathrm{T}})^{-1} \mathbf{D}^{-1} (\mathbf{U}^{-1}) = \mathbf{V} \mathbf{D}^{-1} \mathbf{U}^{\mathrm{T}}$$

Approximate inversion of D

$$\mathbf{D} = \begin{pmatrix} 2.5 & 0 & 0 & 0 \\ 0 & 1.1 & 0 & 0 \\ 0 & 0 & 0.9 & 0 \\ 0 & 0 & 0 & 0.000000001 \end{pmatrix}$$

$$\mathbf{D}^{-1} = \begin{pmatrix} 2.5^{-1} & 0 & 0 & 0 \\ 0 & 1.1^{-1} & 0 & 0 \\ 0 & 0 & 0.9^{-1} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Example: Tomography

Image $f: [0,1]^2 \to \mathbb{R}$

Example: Tomography

Reflections: Spherical Convolution

Mirror Sphere
light transport operator
has full rank

Diffuse SphereIight transport operator
has approx. rank 9
[Ramamoorthi et al. Siggraph 2001]