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Linear Inverse Problems



Inverse Problems

Settings
= (Physical) process f
= Transforms original input x into output b
= Task: recover x from b

Examples:
= 3D structure from photographs
= Tomography: values from line integrals
= 3D geometry from a noisy 3D scan



Linear Inverse Problems

Simplification
= fislinear

Finite dimensional input/output

fx)=Db

written as Afx = b

Then: Inversion of f is ill-posed, if...

.There is no solution.
.there is more than one solution.

..there is exactly one solution, but the SVD contains
very small singular values.



Linear Inverse Problems

Simplification
= fislinear
= Finite dimensional input/output

fx)=Db

written as Afx = b

Then: Inversion of f is ill-posed, if... remark:
formulation for continuous

= __thereis no solution. models (infinite-dim. spaces):

_ . “the solution x depends

= there is more than one solution. continuously on b”

= __there is exactly one solution, but the SVD contains )

very small singular values.



Example

Linear Operator
= Schauder Basis by, b, bs, ...

FC) = ) Aeb()
k=1

. 1 ..
* Linear map Ay = — - Ay IS Il posed

= |nversion would be 1, = k? - 1, (unbounded!)

= Example: Fourier basis
Then this is the Laplace operator A = 97 + «+- + 03



Remark: General SVD

Linear Operator

= Orthogonal functions (“vectors”)
Uq, Up, Uz, . i R =5 R
vl’ UZ’ U3, . ]:R — R

= Scalars (“singular values”)
A, Agy Mg, o € R

= Linearmap L: (R - R) - (R —» R), operates
on functions f: R - R

LN = ) G 4w
k=1

(exists under certain conditions, details beyond this course)



Finite Dim. Linear Inverse Problems

Simplifications
= fislinear
= Finite dimensional input/output

fx)=Db

written as Afx = b

Then: Inversion of f is ill-posed, if...
= __thereis no solution.
= __there is more than one solution.

= _thereis exactly one solution, but the SVD contains
very small singular values.



I[-Posed Problems

Small singular values amplify error

= |nexact input
= Measurement / numerical noise

= SVD
Al =vpDp1ut
7 ™
no problem! no problem!
(orthogonal) (orthogonal)

decisive



Il posed Problems

Ratio: Small singular values amplify errors
x =A"lb = (VD1 UDb

= Example
25 0 0 0
0o 11 o0 0
D= 0 0 0.9 0

0 0 0 0.000000001

Noise amplified by 10°

Does not depend on how we invert the matrix.

Condition number: o,/ 6
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l[lustration of the Problem
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l[lustration of the Problem

original function

SVD spectrum ' SVD spectrum
(here: “frequency domain”)



l[lustration of the Problem
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l[lustration of the Problem
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solution  correct
(from 2 digits)



Analysis

Dominant Eigenvectors
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Pseudo Inverse

SVD Regularized Solve

= For full rank, square A:
A=UDVT
— A*=(UDVT)-1=(V)-1D-1(U-1)=VD-1UT
= Approximate inversion of D

A 25 0 0 0
G do not invert D = ( 0 11 0 0 >
small singular values 0O 0 09 0
replace with 0 0 0 0 0.000000001

SVD spectrum D-! =

< noise level 2.
(here: “frequency domain”)
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Transformation

RT(f):|-V2,v2|x[0,m) - R







Reflections: Spherical Convolution

Mirror Sphere Diffuse Sphere
light transport operator light transport operator
has full rank has approx. rank 9

[Ramamoorthi et al. Siggraph 2001]



